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ANISOTROPIC SMOOTHING AND SOLUTION ADAPTION
FOR UNSTRUCTURED GRIDS

AIMED KHAMAYSEH AND ANDREW KUPRAT
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

SUMMARY

An elliptic smoothing scheme for 2-D structured meshes is generalized to the case of 2-D unstructured
meshes. The resulting scheme is similar to the familiar Laplacian smoothing scheme, but exhibits superior
node diffusion in anisotropic domains. We then show further improvement of grid quality when smoothing
is alternated with Lawson flipping (a technique commonly used to generate Delaunay triangulations). Two

additional enhancements ( “controlled” and “adaptive” smoothing) allow us to create grids suitable for a

realistic MOSFET semiconductor application.

1. INTRODUCTION

In the structured mesh community, smoothing schemes have been developed to a high
degree for the production of high quality quadrilateral meshes.}2 In contrast, smoothing
in the unstructured world of mainly triangular meshes is considerably less developed. One
major problem is the absence of global curvilinear coordinates on these meshes. With
structured meshes, one can easily construct a conformal or quasiconformal mapping be-
tween a logical (£,7)-space and the physical (z,y)-space. With unstructured meshes the
situation is confused by the irregularity of the topological connectivity, leading to no such
obvious mapping,.

In the intermediate case of a regular triangular mesh, Winslow was able to find global
curvilinear coordinates, and constructed a smoothing scheme by requiring the coordinates
to each satisfy Laplace’s equation.? Far from boundaries, this scheme tends towards making
the position of each node equal to the average position of its neighbours. Subsequently,
researchers in need of a smoothing algorithm for fully unstructured meshes have continued
with the idea of replacing a node by the average position of its neighbours (even though
no obvious global mapping exists to justify this process), and this has come to be known
as Laplacian smoothing for unstructured grids.

One well known problem with this is that near boundaries, Laplacian smoothing can
produce node spillover (where the orientation of triangles are reversed, and the mesh
becomes unusable). Another problem that we have observed is poor node diffusion in
anisotropic domains. Unweighted node position averaging is inherently isotropic; in this
paper we will introduce weights (depending on distances between nodes) that make the
scheme anisotropic and more appropriate for anisotropic domains.
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Indeed, we view Laplacian smoothing for unstructured grids as a generalization of a
conformal mapping smoothing scheme for structured grids. Conformal maps are isotropic;
squares are mapped to squares, not rectangles. Using a guasi-conformal mapping (a gen-
eralization of a conformal mapping which allows for a non-unit aspect ratio) we derive a
new smoothing scheme which we call Elliptic Smoothing for Unstructured Grids (ESUG).
In an example, we show superior diffusion of a source of points into an anisotropic domain.

In light of the extreme mobility of points under ESUG, we then develop controlled
ESUG which limits node mobility to a user-desired degree, for those cases where complete
node diffusion is not desired. Also developed is a solution adaption capability in which the
mesh smoothing algorithm is modified to move grid points into areas where an objective
function has large gradients. We present some real-world applications of these algorithms
to MOSFET semiconductor modeling at the end of this paper.

2. ELLIPTIC SMOOTHING FOR A 2D STRUCTURED MESH

Elliptic systems have been widely recognized among the structured grid generation com-
munity to be an efficient tools to construct high quality meshes.! In 2D a robust elliptic
system can be based on the quasiconformal mapping equations? to produce smooth, adap-
tive, orthogonal coordinates. Solution of these equations constitutes an elliptic smoothing
scheme for these kinds of meshes. Here we review this scheme for structured quadrilateral
meshes; this scheme will be generalized to unstructured meshes in the following section.

We assume that the boundary nodes in our quadrilateral mesh are fixed, but we are
free to move interior nodes. It is desired that interior node positions be adjusted to achieve
a smooth variation in quadrilateral shape and area given the constraints on the boundary

nodes. Now consider a quasiconformal mapping ¢ = &(z,y) + in(z,y) from the region D
in (z,y)-space to a region R in (£, n)-space, Figure 1.

Figure 1. Quasiconformal mapping © from physical space to logical space.
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By definition, the real and imaginary parts of ¢ are solutions to Beltrami’s equations

o = Mleny + bn) (2.1)
—& = M(ans +bny)
where a, b, ¢ are functions of z and y with a,c¢ > 0 and satisfy the equation ac — 42 =1 on
D and M is the dilation of the mapping.

We only consider the special case where a = ¢ =1 and b = 0. Then (2.1) reduces to

£x = My (2.2)
=&y = Mn,.

This system is just the Cauchy-Riemann equations, except for the stretching factor M.
Under these conditions, we see that the mapping is orthogonal and satisfies Laplace’s
equation:

Ay = 0,
The inverse mapping satisfies

g2aree + g11ryy = 0,

where r =(2(¢,1),y(€,1)), g1 = r¢ - Te, and gaa = 1y - 14,2 This system is then discretized
to be
Wy T, F Wiy i+l el e
W?+1,j i w?—l,j T w?,j+1 it w?,j—l ,

where the weights wit1,j = /822, wi—1,; = /822, Wi j+1 = /B11, and w; j—1 = /811

A smoothing algorithm based on (2.3) is then implemented using Gauss-Seidel relax-
ations. Nodes are relaxed in sequential order using (2.3), and each new node location is
immediately incorporated in subsequent relaxations. After a sufficient number of Gauss-

Seidel sweeps, (2.3) is approximately satisfied, and the scheme is deemed to have converged.

Ty =

(2.3)

3. GENERALIZATION OF ELLIPTIC SMOOTHING TO UNSTRUCTURED GRIDS

It is now desired to generalize (2.3) to the case where we have a 2-dimensional unstruc-
tured mesh. Hence, we do not assume a quadrilateral element shape or any regular mesh
connectivity. Typically in such a mesh, we are dealing with triangular elements, but we
are not restricting ourselves to this case.

For a node ¢ in such an unstructured mesh, list the neighbours p of ¢ in counterclockwise

order {p1,p2, ..., Pdeg(q) }- Consider the following smoothing scheme:

q)
j (d}?k—l ,Pk+1)2rpk

- . (3.1)
E (dpk—1 }Pk+1)2
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Here, dp,_,,p,4, refers to the distance between nodes py—1 and pgy1, and the subscripts
“k—1” and “k 417 are evaluated modulo deg(q). (See Figure 2.)

p P
k+1 k+1
dp » Girip q)
k-1, k+l k!
P P
k k
P P
k-1 k-1
Figure 2. Distance used for weight of Pg in the Figure 3. In a triangular unstructured grid,

relaxation of node ¢ in an unstructured grid. distance used for weight of Pr in the relaxation

of node ¢ equals that for ¢ in the relaxation of
node Pg.

Thus ry is taken to be the weighted sum of the positions of the neighbours, and the
welght for r,, is taken to be the square of the distance between the neighbours that come
immediately before and after py in the listing of neighbours of ¢. In the case of triangular
unstructured grids, pr—1 and pgy1 have the property that they are the two unique mutual
netghbours of ¢ and pg. Then (3.1) is more naturally written as

Z(dnbr{p,q})grl’
r
, 3.2
Z(dnbr{p,q})2 (3.2
P

ry =

where dpy,;(p 4} denotes the distance between the two mutual neighbours of nodes p and ¢,
and the sum is taken over all neighbours p of ¢. (See Figure 3.)

We now claim that this scheme is identical to (2.3) in the special case of structured
quadrilateral meshes. Indeed, observe that for the node at r; ; in (2.3), the neighbours in

counterclockwise order are (¢ +1,7),(¢,7+1),(¢ —1,7), and (¢,7 —1). Now in the notation
of (3.1), let ¢ = (2,7) and consider py = (i + 1,7). Then,

dp,,p, = distance between r; ;1 and r; j11
= 2[ry|

:QwH.I,j.



Similarly, we find that

dpy,ps = 2Wi,j+1,
dpsps = 2wi—1,j,
dpg,py = 2wi -1,

and so all the unnormalized weights are identical to within a factor of 22, and hence the
schemes are identical after normalization of the weights.

Equations (3.1) or (3.2) represent a generalization of elliptic smoothing to unstructured
meshes. Note that if we had restricted ourselves to using merely a conformal mapping,
then we would have had (2.2) with M = 1. In this case, it is clear that we would have been
led to (3.1) or (3.2) with the weights all set equal, which is the usual Laplacian smoothing
scheme.

What we have not exhibited in our generalization is a global quasiconformal mapping,
but that would be a daunting task, given the fact that the mesh connectivity is completely
arbitrary. Also, our generalization is certainly not the only one possible. What we do
exhibit in our generalization is the essential feature of the structured case algorithm: dis-
tance (squared) weighting, with the distance measured in a “transverse” direction. Hence
it is not surprising that ESUG works in practice; we will see in the next section the supe-
rior ability of ESUG to diffuse points into an anisotropic domain. An added advantage of

distance weighting is that the scheme is then naturally generalizable to solution adaption,
as will be seen in Section 6.

4. COMPARISON OF ESUG WITH LAPLACIAN SMOOTHING IN AN ANISOTROPIC DOMAIN

In Figure 4, we consider a rectangle with 4:1 aspect ratio with an isotropic “source” of
points in the middle. In Figures 5 and 6, we compare the effects of ESUG versus Laplacian
smoothing. Clearly, the dense source of points in the middle has diffused far more in ESUG
than in Laplacian smoothing. In the ESUG case, we see that the boundary triangles closest
to the source of nodes have been allowed to deform in an appropriate anisotropic fashion,
thus allowing the isotropic source of points to expand more than in the Laplacian case. In
contrast, the boundary triangles nearest the middle in the Laplacian case are more ‘rigid’
and expansion of the source of points is retarded.

Next we consider the effect of a sequence of smoothings and Lawson flips on these
meshes. Lawson flips break the connectivity of the mesh and establish a Delaunay tri-
angulation which is a common requirement for computation.* One might speculate that
a repeated sequence of smoothings and Lawson flips would produce a uniform Delaunay
mesh. In Figure 8, we have subjected our initial grid to an alternating sequence of ESUG

and Lawson flips, performing both procedures three times each. The result is a Delaunay
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mesh which appears as diffused as is possible given the fact that we have chosen not to
move the points on the boundary.

In contrast, the same procedure with Laplacian smoothing substituted for ESUG yields
Figure 7. Here the diffusion process has come to a standstill and does not appear to be
enhanced by Lawson flipping. It is here quite apparent that the exclusive use of Laplacian

smoothing along with changes of mesh connectivity may be insufficient to equilibrate node
densities in many kinds of problem domains.

=

Figure 4. Initial grid.

=

Y /

Figure 5. Grid after Laplacian smoothing only.

e

Figure 6. Grid after anisotropic elliptic smoothing only.



Figure 7. Grid after Laplacian smoothing with Lawson flips.

Figure 8. Grid after anisotropic elliptic smoothing with Lawson flips.

5. CONTROLLED SMOOTHING

In practice, unstructured meshes used for the solution of partial differential equations
(PDEs) are frequently refined in locations of critical behaviour. Refinement algorithms
perform a standard action such as edge bisection in such regions. Certainly, after sufficient
refinements, any desired node density can be achieved. However it is often the case that
refinement results in a poor distribution of triangle areas and shapes. Such grids are
excellent candidates for smoothing. However smoothing schemes, when implemented in
unmodified “uncontrolled” form, will cause refined regions to “smear out”, reducing the
desired high node density in these regions. So, although smoothing is crucial for producing
grids of satisfactory quality in the refined region, it must be controlled in some way to retain
the presmoothed node density information.

Let us define a control parameter A that ranges from 0 to 1. It is desired that a
new controlled smoothing scheme be devised such that A = 0 corresponds to the original,
uncontrolled smoothing scheme, and A = 1 corresponds to no mesh movement whatsoever
(the identity map). As A changes continuously from 0 to 1, it is desired that a continuum

of smoothing schemes is obtained that are increasingly inhibited in the amount of node
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movement allowed. The following simple modification to (3.2) satisfies these criteria:

> (dubr{p,q})*Tp
rg = Ard +(1—X) Pz(
P

dnbl‘{}‘?:‘?})z ’ (51)

Here, v} corresponds to the original undisturbed position of node ¢. In mathematical
terms, we have constructed a simply homotopy between the identity map and our original
smoothing scheme. Indeed, one could obtain such homotopies for any Gauss-Seidel node

relaxation scheme by substituting those schemes into the righthand side of (5.1). So, for
example, Laplace smoothing would become

2.Tp

ry = Ard + (1 —A) d:g(q)' (5.2)

Not only is (5.1) a simple modification of (3.2), but we have found in practice that it
retains the desirable element shape improving qualities of the original scheme. Although
element areas are not globally equilibrated (for some nonzero value of ), element areas are
allowed to locally equilibrate—and this is exactly what is desired.

6. ADAPTIVE ELLIPTIC SMOOTHING FOR UNSTRUCTURED GRIDS

In many applications, it is desirable to smooth the mesh in such a fashion as to adapt
it to some function defined over that mesh. Suppose the function f(z,y) is the solution to
a PDE, and it is desired to move nodes into regions where the gradient of f is large. This
has the effect of packing grid into regions where the function f undergoes rapid change,
and where resolution is needed. (It can be argued that in many cases it is in regions
of curvature of f that high node density is desiredS, but this is essentially equivalent to
packing grid into regions where the functions g = %ﬂé and h = %5 have large gradients.)

Our original ESUG scheme can be readily turned into a scheme for adapting to Vf by
recognizing that the dype(p,q} in (3.2) have the dimensions of distance. These distances
can readily be “warped” to force the scheme to adapt to the gradients of f. Indeed, if one
considers the distance from a point py to a point pg to be the distance along the graph of

¢
(dpk,pk:)z = (Tp) — mpkr)z + (Yps — yw)g + (fpe — Fou b (6.1)

then our elliptic scheme is being essentially performed on the graph of f (i.e., on the surface
z = f(z,y)). Hence, if element areas are equidistributed on this surface, the effect of this
will be to move grid points into the gradient regions (see Figure 9).



y=f(x)

smoothing on graph of f

1-D adapted grid
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Figure 9. 1-D Simplification of Adaptive Smoothing Strategy.
In reality [ is bivariate and we produce a 2-D adapted grid.

In mathematical terms, we are performing our ESUG scheme using a Riemannian
metric for measuring the distance between points in the (z,y) plane.® This non-Euclidean
distance, induced from the graph of a function via (6.1) can be used in any smoothing
scheme involving distance weighting. It is apparent that shrinking or expanding the scale
of the function f represents a free parameter that controls the degree of adaptivity. Indeed,
as the scale of f is shrunken, the distance measure in (6.1) tends towards the standard
Euclidean metric for IR, and the algorithm tends towards the standard (non-adaptive)
smoothing algorithm. Also, it is clear that this adaptivity can be expanded to the case of

adapting to n functions (as is the case in solving a system of PDEs) by incorporating a
term for each function:

(dpkypk’)z = (mpk - mPkf)Z + (ypk — Ypp )2 i (fl%k. - fj}k’ )2 +..t (ka - ka')z'

7. MAINTAINING A DELAUNAY TRIANGULATION AND MESH INTEGRITY

In practice, it is frequently necessary to follow smoothing with a Delaunay swap step7,
whereby Lawson flips are used to convert the smoothed grid to a Delaunay grid. Indeed
for Voronoi cell finite volume calculations, it is necessary to have a Delaunay grid; for
finite element calculations this may be unnecessary, but still may be beneficial. Hence,
we commonly follow ESUG by Lawson swaps to produce a Delaunay mesh suitable for
computing with a finite volume solver.

Another detail is “mesh integrity damping”. Define “spillover” as the ejection of a node
from the surrounding polygon formed by its neighbours during the relaxation process. Such
an ejection reverses the orientation of triangles and destroys the integrity of the mesh. Note

that both ESUG and Laplacian smoothing involve relaxing a node to a position equal to
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the weighted average positions of its neighbours. Since the weights in both schemes are
positive, it is clear that (assuming a Gauss-Seidel single node relaxation) node spillover
cannot occur for either scheme when the surrounding neighbours form a convex polygon.
However, when the neighbours of a node form a nonconvex polygon, both methods are
prone to spillover.

To prevent spillover, we limit movement at each Gauss-Seidel node relaxation by mul-
tiplying the node displacement prescribed by (3.1), (3.2), or (5.1) by a damping factor
which insures that no triangle has a reduction in area below a minimum threshold. How-
ever, this damping is only invoked in some cases of smoothing near nonconvex boundaries
or adaptive smoothing to “challenging” functions with extreme changes in gradient.

8. MOSFET SEMICONDUCTOR EXAMPLE

In Figure 10 we show an initial grid taken from an actual MOSFET semiconductor
application. In Figure 11 we show a perspective view of a doping function to which we
wish to adapt our grid. (As can be seen, this function is piecewise linear and contains
extremely sharp gradients. The fine grid in this figure is used only for the definition of
the function and is not the grid that we are trying to adapt.) Adaptive smoothing is to
be performed on the shaded portion of the grid in Figure 10, which corresponds to most
of the Silicon substrate portion of the device.

In Figure 12 we show the effects of initially running the adaptive smoothing algorithm
[(3.1) and (6.1)] on the grid in Figure 10. Good adaption to the steep gradient is observed.
However we observe that better adaption can be obtained by using an alternating sequence
of adaptive smoothing followed by Lawson flips, followed by more adaptive smoothing, etc.
In Figure 13 we show the results of 10 adaptive smoothings, alternated with 10 rounds
of Lawson flips. The flips cause topological changes that ultimately allow for a better
adapted mesh. In fact, we note that Figure 10 and Figure 12 are topologically equivalent,
and this topology is clearly not the best one for adapting to the function of Figure 11.
This is indicated by the unnecessarily stretched triangles in Figure 12. In Figure 13 we see
that Lawson flips have eliminated the unnecessarily stretched triangles, and have allowed
more of the grid to move into the challenging steep gradient region.

A final technical note pertaining to the grid in Figure 13 is that the last stage of
Lawson flipping also included the insertion of a small number of nodes (7) on the boundary
of the smoothed region. This is to eliminate obtuse boundary-facing angles, which is a
requirement of our finite volume solver. In general, obtuse boundary-facing angles (those
angles opposite a boundary edge) cannot all be eliminated by Lawson flips of the interior

edges. Hence the last stage of Lawson flipping actually consists of an alternating sequence
of flips and boundary point insertions where necessary.
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Next we try the alternate approach of using adaptive refinement followed by non-
adaptive smoothing. In Figure 14 we have refined the initial grid in the shaded region
where the doping function has the large gradient. Unfortunately the refinement has pro-
duced poorly-shaped triangles in this critical region, exhibiting a poor distribution of
triangle areas. Also, due to asymmetry in the connectivity of the piecewise linear doping
function, the refinement exhibits marked asymmetry. Then in Figure 15 we show the re-
sults of applying the plain (uncontrolled, non-adaptive) elliptic smoothing algorithm (3.2)
on the shaded portion of Figure 14. The effect is that indeed the triangle areas are well
equilibrated. However the regions of refinement have been oversmoothed, reducing the
node density in these critical regions. Finally, in Figure 16, we show the results of our
controlled elliptic smoothing algorithm (5.1). Here we have chosen A = 1. As can be seen,
the node density in the critical regions is preserved but, as in Figure 15, triangle shape,
area distribution, and symmetry are greatly improved. Finally we note that to make this
grid suitable for finite volume computation, we should again follow smoothing by a round
of Lawson flips with possible boundary point insertions.

2

e

Figure 10. Initial MOSFET grid. Shaded region is targeted for adaptive smoothing.
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Figure 11. Perspective view of the doping function.
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Figure 12. Grid after adaptive elliptic smoothing.
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Figure 13. Grid after adaptive elliptic smoothing with Lawson flips.
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Figure 14. Grid after adaptive refinement. Shaded region is targeted for smoothing.
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Figure 15. Grid after refinement followed by elliptic smoothing.

§
|
|

<

Figure 16. Grid after refinement and controlled elliptic smoothing.
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